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I t  is very important that the spin and spatial variables appear uncoupled in the 
kernel so that  we can study systems in which we consider either the spin variables [Z] 
or the orbital ones only [ll], by simply taking L ' lz(n,n ' ,n")  or L(u,u',u'') as the 
kernel respectively. 

If H ( y )  is a classical (time-independent) Hamiltonian, we can obtain an operator 
'H associated with i t  using the Weyl correspondence. If H is real, we know that 'H 
will be symmetric. Let us suppose that it is, in fact, self-adjoint. We can define the 
unitary evolution operator 

U ( t )  = exp{-it'H}. (4) 

Its phase-space counterpart, the M o y a l  propagator ,  is given by 

The Fourier transform with respect to time of this function provides us with the 
spectral projector: 

P H ( y ;  E )  = & Z,(y; t)eitE dt 

I t  has been proved [ll] that the spectrum of 3F is the support on the variable E of 
P H ( y ;  E ) .  Therefore, we have an alternative way of evaluating the spectrum of a 
quantum mechanical operator. 

Let us write down the relevant Hamiltonian. The free Hamiltonian for a spinning 
panicle can v e  wriccen ( i / ~ m ) ( p .  vv ) x ( p '  vv J ,  wilere V I  ( 1 8 )  = ( V J / L ) T L  ueiioces me 
vector function associated with the vector spin operator S. Using the minimal coupling 
recipe to introduce the electromagnetic interaction in the phase-space formalism [Z], 
we get 

~ ~ - - & : . , ~  ~~~~ L . ~ ~ ~ ~ I L 1 ~ ~ ~  I .  , n ~ ~ \ , ~ ~  r.7, . . , ~ ~  I.,\ ...,~~-~ . X , , ~ ~ ,  I K", , ~ ~ ~ ~ 1 ~ - 1 1 ~ ~  

n 

(7) 
L 

H = - [ ( p -  eA) .  W ] x  ( ( p - e A ) . W ] + e @  
m 

where A(q, t )  and @ ( q , t )  are the vector and scalar potentials respectively. Taking 
into account that  A is independent of the momentum coordinates, it is easy to see 
that  

with B = rotA. In our formalism equation (8) is equivalent to the Pauli equation. 
After an elementary calculation, we can convince ourselves that it is possible to sub- 
stitute the twisted product in (8) with the ordinary scalar product, so that 

(9) 
1 e 

H = - ( p  - eA(q))' - ;B(q) .  W(n)  + e @ ( q ) .  2m 

We want a constant magnetic field B ;  let us choose it in the direction of the 
positive z-axis, B = Bk. Here, we use the gauge A = ( -Bqz ,O,O) .  It is important 
to emphasize that some of the results are gauge-dependent (in particular Wigner 
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functions). The gauge we have chosen is the most suitable for easing the work (it is, 
by the way, the one chosen by Landau [12]). Therefore, we can write (9) as 

0 0 0 0 0 0  
0 0 ( e B )  0 0 

( 1 0 )  
eB 
m 

u - - W z ( n ) = h ( u ) + s ( n ) .  

In (lo), the spatial and spin variables are separated. This point is very important in 
the following. We want t o  evaluate the  Moyal propagator E(y; t )  associated with the 
Hamiltonian in ( l o ) ,  using (5). Then we will evaluate the spectral projector (6) and 
finally the spectrum of the Hamiltonian, analysing the support on E of the spectral 
projector. In order to calculate (5), we use the twisted product given by ( 1 )  and (Z), 
where again the spatial and spin variables are not mixed. Due to these facts, it is 
trivial to verify that the complete propagator factorizes according to 

(11) 
- GH(u,n;t)  = E , ( u ; t )  x S 3 ( n ; t )  = E * ( u ; t ) s , ( n ; t ) .  

The Hamiltonian of a spinning particle in a constant magnetic field belongs to the 
class of distinguished Hamiltonians, for which the Moyal propagator can be computed 
in closed form. The spin part turns out to be easier. Introducing the cyclotronic 
frequency, we have s(n)  = wW,. Using (5), we get 

wt  ut 
2 2 ~ , ( n ; t )  = c o s - - i f i c o s ~ s i n -  

Consider generally now an orbital part  of the following quadratic form: 

H ( u ,  t )  = fufB(t)u + u ' c ( t )  + d( t )  ( 1 3 )  

where B ( t )  is a 6 x 6 symmetric matrix, c(t )  is a six-dimensional vector and d ( t )  is 
a real function. I t  is possible to find a solution of Hamilton's equations of motion in 
the form 

u(t , t , )= X ( t , t , ) u , + a ( t , t , )  (14) 

where X ( t , t , )  is a 6 x 6 matrix and u0 are the initial conditions, so that X ( t , , t , )  = I 
and a(t,, t o )  = 0 .  Hamilton's equations give us the following differential equations for 
X and o 

X ( t , t , )  = J B ( t ) X ( t , t o )  u ( t , t , )  = J B ( t ) a ( t , t o ) +  J c ( t ) .  (15) 

Once we have solved (E), we can obtain the Moyal propagator by means of the 
following formula [ l l ]  

z,(u;t) = F(t, to)exp[i(u*Cu + u'k)] 
with 

C = J ( X  + I)-'(X - I) = J - 2 J ( X  + I)-' 
k = Z J ( X  + I)-'a = ( J  - C)a. 
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The function F(t , t ,)  can be shown to be 

with 

t 

@(t) = 1 [ic'(s)Jk(s) + ik'(s)JB(s)Jk(s) - d(s)]ds. (19) 
t o  

We summarize the forthcoming comptutation as follows. 
(i) Solve the system of differential equations (15). We take 2, = 0. The second 

system has the trivial solution a(t) 3 0 ,  which simplifies the calculations. The first 
system has solution 

due to the fact that  B is time-independent. Using (3) and the orbital part in (10) we 
obtain after some algebra 

0 
-sin wt 0 sin wt/mw -( 1 - cos wt)/mw I ;  coswt 0 (1-coswt)lmw sin wtlmw 

0 1 0 Io0 0 0 1 
X ( t )  = t /m  I (21) 0 

0 0 '  

O 1  1 
[: -mw;inwt o sin wt cos wt 

0 0 0 

(ii) Evaluate (17). In this case k( t )  E 0, due to the fact that a( t )  E 0 .  We obtain 

0 0 0 0 0 

0 0 0 
0 

0 0 0 0 -(mw)-'tan(wt/2) 0 
0 0 0 0 0 

0 -mwtan(wt/2) 0 tan(wtl2) 0 

G = [ '  0 tan(wtl2) 0 -(mw)-' tan(wtl2) 

(22) 

(iii) To know F(t)  we need the function P ( t )  in (lg),  which is identically zero in 

(iv) Collecting the results of (i), (ii) and (iii), we get 
this case. We then have F(t)  = (coswt/2)-'. 

2 >I ( ' Z) ")&(U; 1 )  = - exp [ -- ( tan- T) (e + mwZqi-wplqz exp -it- . - 
cos wt/2 

We can see that the variables ( 1 , Z )  play a different role from that of variable (3). This 
fact is due to the choice of direction for the magnetic field. 
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(v) The last step is to obtain the spectral projector and its support. The propa- 
gator is 

E,(% n; t )  = - coswt/2 exp(-:h(l,2)tan--it- 2 2m p: 1 
x - 2 [ exp (3 - (1 - A n z )  + exp (-$) (1 + ~ n . ) ]  . (24) 

By h ( 1 , 2 )  we represent the part of the Hamiltonian which depends only on these 
variables. I t  appears explicitly written in (23). 

Now, we evaluate the spectral projector: 

- - -49 i& dt exp (it (. + - 2) - ?h(I,  2 )  t 
coswt/2 W 

( 2 5 )  

To evaluate these integrals, we use the identity 

which comes from the definition of Laguerre polynomials by means of their generating 
function. 

From ( 2 6 ) ,  we have 

dt exp(iAt)exp (-:tau $) 
m 

= ~ ( - 1 ) " 2 e x p ( - z / 2 ) L n ( z ) /  exp(iAt -iwt(n+ i ) ) d t  

= 4 a C ( - l ) "  exp(-z/Z)L,(z) 6(A - w ( n  + f)). 
w n=O 

m 

"=O 

In our case 

w P2 A = E * -  414 1,2) 
I=- 

W 2 2m 
Therefore, we have 

-2h(l, 2 )  m 
P,(u,~;E) = x ( - ~ ) " e x p  ( ) L " ( Y )  

"=O 

x ( l-v6nz)6(E- [&+IIw] )  
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Here we see that the support on the variable E of this function is 

This is the expected result, see formula (111.7) in Landau 1121. 
To finish the paper we are going to obtain the Wigner functions [7] corresponding 

to the eigenfunctions evaluated by Landau's formula (111.6) and we will see that they 
are, essentiaiiy, ihe coe6cients of Dirac's deitas in (28). The spectrai projector directiy 
provides us with this information! 

First of all, let us write the wavefunctions of Landau's formula (111.6) in a conve- 
nient form: 

(30) 

p30 zri two fixid ria! x m b i r s .  H,(rj are Beiiiiite po~yiioniiak. The %'ignei ll..".. - 
function corresponding to this wavefunction is given by [7] 

PlO 112 
x H" (G (c - + y )) 
x H ,  (6 (4, - 2 - ?)) do, du, du, 

e-.2 

T f i  
-- - 6(p1 - plO)6(p3 - p30) L e - z 2 e i b z  H,(a + z)H,(a - z) dz.  (31) 

For the sake of simplicity we have written 

By using the parity properties of the Hermite polynomials, the integral in (31) 
could he written in the form 

e-(.2t(b/z)z) m .+ -m 
w, = (-1)" 6 ( ~ 1  - ~ 1 0 ) 6 ( ~ 3  - ~ 3 0 )  J e-"'Hn(z + m) H"(z - a * ) d z  
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In the last step we have used the identity (7.377) of [13]. By &(I) we represent the 
Lagnerre polynomials. In order to finish this calculation, let us substitute formulae 
(32) in (33). We get 

The f.E&. h ( ! , ? )  is on. given ir. f"rrr..].. (77) .nA (94) p.. pie &icip&d, 
\I"/ I.." \- -/ '  

summing over plo,p20 to reintroduce the degeneration, we recover, except for a con- 
stant factor, the coeficients of the spectral projector. The concrete form of the Wigner 
function depends on the gauge chosen. 
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