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Phase-space study of a spinning quantum particle in a
constant magnetic field

Luis M Nieto
Departamento de Fisica Tedrica, Universidad de Valladeolid, 47011 Valladolid, Spain

Received 16 November 1550

Abstract, Landau levels are obtained using the techniques of phase-space quantum
mechanics. Wigner functions are calculated for the eigenstates of this system.

In some recently published papers a new basis [1-5] for the classical formalism of
quantum mechanics in phase-space has been established {6-9]. The original limitation
of the formalism to spinless particles has been overcome [2, 10]. However, the corre-
spondence between quantum spin states and observables and functions on the sphere
analysed in these papers ig not directly used to solve any problem of physical interest.
Here we apply the new spin formalism to a very well known problem: a spinning
particle immersed in a constant magnetic field.

The relevant phase-space is R® x S?, with coordinates v = (g,p;n) = (u;n), n
being the coordinates of a point on the sphere $%. The non-commutativity of the
operator product in quantum mechanics translates into a non-commutative operation
between functions defined on a phase-space, the so-called twisted produci. In this
case, it is given by

(Fx9)n) = j;m 52 /Rsx & TONIOL(y 7) dy dy” (1)

where f,g are functions defined over the phase-space, the measure over this space
is dy = dudn = dg¢, dg, dg, dp, dp, dpg sind d8 d¢, (8, ¢) being the usual spherical
coordinates, and the integral kernel £ is

RPN i

L(7, 7 7") = L{u, o', w") LYi(n,n' n") = (;lr_) exp[2i{utde + u' Ju" + u' Ju)]

2
X (;;l—w) 143(n-n"+n'-n" +n" . n)+ i3\/§[ﬂ, n' n"}}. (2)

By J we represent the matrix

)= (f, (')) 3)

| being the 3 x 3 identity matrix. Units are taken throughout so that h =c=1.
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It is very important that the spin and spatial variables appear uncoupled in the
kernel so that we can study systems in which we consider either the spin variables [2]
or the orbital ones only [11], by simply taking L”z(n,n',n") or L{u,u’,u") as the
kernel respectively.

If H(y) is a classical (time-independent)} Hamiltonian, we can obtain an operator
‘M associated with it using the Weyl correspondence. If H is real, we know that A
will be symmetric. Let us suppose that it is, in fact, self-adjoint. We can define the
unitary evolution operator

U(t) = exp{—itH}. (4)

Its phase-space counterpart, the Moyal propagator, is given by
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The Fourier transform with respect to time of this function provides us with the
spectral projector:

L - i
Py(v; B} = e A:H(‘y;t)e‘E di. (6)

It has been proved [11] that the spectrum of H is the support on the variable E of
Py (7; E). Therefore, we have an alternative way of evaluating the spectrum of a
quantum mechanical operator.

Let us write down the relevant Hamiltonian. The free Hamiltonian for a spinning
particle can be written (1/2m){(p- W) x (p- W), where W{n) = (V/3/2)n denotes the
vector function associated with the vector spin operator §. Using the minimal coupling
recipe to introduce the electromagnetic interaction in the phase-space formalism [2],
we get

H:%[(p..e,i)-w]x[(p_eA)-w1+e<1> G

where A(q,t} and ®(q,t) are the vector and scalar potentials respectively. Taking
into account that A is independent of the momentum coordinates, it is easy to see
that .

1
2m

H — (oY w (- pd) —
= W tAPX I\ P—EA)

; B-W + ¢

3|
-
0
Sermar”

with B = rotA. In our formalism equation (8) is equivalent to the Pauli equation.
After an elementary calculation, we can convince ourselves that it is possible to sub-
stitute the twisted product in (8) with the ordinary scalar product, so that

[+

1

H=o—(p - eA@)’ - =B(g) W(n) +c3(q) ©)
We want a constant magnetic field B; let us choose it in the direction of the

positive z-axis, B = Bk. Here, we use the gauge A = (—Hg,,0,0). It is important

to emphasize that some of the results are gauge-dependent (in particular Wigner



Phase-space study of a spinning quantum particle 1681

functions). The gauge we have chosen is the most suitable for easing the work (it is,
by the way, the one chosen by Landau [12]). Therefore, we can write (9) as

¢ o0 0 0 00
0 (eB)® 0 (eB) 0 0
1 440 0 0 0 00 eB _
H= o B) 0 1 0 0 u— ?I’Vz(n) = h(u) + s(n). (10)
0 o ¢ o0 10
6o o ¢ 0 01

In (10), the spatial and spin variables are separated. This point is very important in
the following. We want to evaluate the Moyal propagator Z(v;1) associated with the
Hamiltonian in (10), using (5). Then we will evaluate the spectral projector (6) and
finally the spectrum of the Hamiltonian, analysing the support on E of the spectral
projector. In order to calculate (5), we use the twisted product given by (1) and (2),
where again the spatial and spin variables are not mixed. Due to these facts, it is
trivial to verify that the complete propagator factorizes according to

Eulu,nit) = E,(u;t) x E,(n; ) = E,(u;8)F,(n;1). (11)

The Hamiltonian of a spinning particle in a constant magnetic field belongs to the
class of distinguished Hamiltonians, for which the Moyal propagator can be computed
in closed form. The spin part turns out to be easier. Introducing the cyclotronic
frequency, we have s(n) = wW,. Using {5), we get

E,(n;t) = cos-u;—t — iV 3cosfsin %t (12)

Consider generally now an orbital part of the following quadratic form:
H(u,t) = 1u'B(t)u + u'c(t) + d(t) (13)

where B(Z) is a 6 x 6 symmetric matrix, ¢() is a six-dimensional vector and d(t) is
a real function. It is possible to find a solution of Hamilton’s equations of motion in
the form

u{t,t,) = B(t, 1,)uy +a(t, ty) (14)

where E(1,¢,) is a 6 x 6 matrix and u, are the initial conditions, so that (t,,¢,) = |
and a(f,, t;) = 0. Hamilton’s equations give us the following differential equations for
Yanda

B(t, 1) = JB(H)E(t,1,) a(t, i,} = JB(t)a(t, ty) + Je(?). (15)

Once we have solved (15), we can obtain the Moyal propagator by means of the
following formula [11]

Eylu;t) = F(L,to) exp[i(u!Gu + u'k)] (16)
with
C= S+ (Z=1)=J-2T+1)

k=2)(Z+0"la=(J-G)a. (”)
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The function F(t,t,) can be shown to be

_ exp(if(¢)]
Fltty) = VAt (B, ty) + 1)/2) (18)
with
B(t) = j, (L} (5)3k(s) + Lk!(s)IB(s)Tk(s) — d(s)]ds. (19)

We summarize the forthcoming comptutation as follows.

(i) Solve the system of differential equations (15). We take ¢, = 0. The second
system has the trivial solution a(t) = 0, which simplifies the calculations. The first
system has solution

5y =8 = 3O sy (20)
=0

due to the fact that B is time-independent. Using (3) and the orbital part in {10) we
obtain after some algebra

1 —sinwt 0 sinwt/mw —(1 —coswt)fmw 0
0 coswt 0 (1-coswt)/mw sinwt/mw 0
0 0 1 t/m
2t = |, 0 0 1 0 /0 (21)
0 —-mwsinwt 0 sinwt coswi 0
0 0 0 0 0 1

(ii) Evaluate (17). In this case k(f) = 0, due to the fact that a(t) = 0. We obtain

0 0 0 0 0 0
0 —mwtan(wt/2) 0 tan{wt/2) 0 0
g=10 0 0 0 0 0
—]o tan(wi/2) 0 —(mw)~?tan(wt/2) 0 0
0 0 0 0 —(mw)~* tan(wt/2) 0
0 0 0 0 0 —t/2m
(22)

(iii) To know F'(t) we need the function A(t) in (19}, which is identically zero in
this case. We then have F(t) = (coswt/2)7!.
(iv) Collecting the results of (i), (ii) and (iii), we get

- 1 2 wt) (pi+py  mw? , ., P}
= i) = ————— - _— —_— t—q, - ==,

w(ust) coswtf2 exp[ w (tan 2) ( 2m + g T2 T WP P Ty
(23)

We can see that the variables (1,2) play a different role from that of variable (3). This
fact is due to the choice of direction for the magnetic field.
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(v) The last step is to obtain the spectral projector and its support. The propa-
gator is

= Y = _zi wt . p3
Splu,nit) = coswt [2 exp{ wh(I’Q) tan 3 _]tdQ—n:}
X % {exp (l-t;—t) (1=v3n,) +exp (—%) 1+ \/ﬁnz)] . (24)

By k(1,2) we represent the part of the Hamilionian which depends only on these
variables. It appears explicitly written in (23).
Now, we evaluate the spectral projector:
1

Py(u,n;E) = gijH(u,n‘,t)ehE a

_ 1—\/3-11, / dt . w Pl 9% ot
- 4 R coswit/2 eXp {lt <E+ 5 9m/ ;h(l,?) tan—2—

1+\/§an dt . w pi 2i wt}
t{E—-— -2 - Zh =5,

tar fhemarz PV E T Ty T oA
(25)

To evaluate these integrals, we use the identity

exp (—-1-?- tan 2) = Z(— 1)*2exp(—2/2)L,(z) exp(—iy(n + 3)) (26)

cos y/2 2 2

n=0
which comes from the definition of Laguerre polyncemials by means of their generating

function.
From (26), we have

-/]R :ostht/E exp(iAt) exp (—% tan w_g_t)
= i(—l)"Qexp(—‘m/an("—')] exp(idt —iwt(n + %)) dt
n=0 R
= 47 Y _(—1)" exp(—z/2)L,(2) 6(r ~w(n + ). i (27
n=0
In our case
:c=4h(1’2) A:E:l:i——?g—

w 2 2m’

Therefore, we have

Patwm )= Lo () 1, (HE2)

[
n=0 W

X {(1 —V3n,)6 (E - [5"% + nw])
+ (14 V3n,)6 (E— [Eﬁ—+w(n+1)])}. (28)

2m
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Here we see that the support on the variable E of this function is

2
E=Z2 pum+id). (29)

This is the expected result, see formula (111.7) in Landau [12).

To finish the paper we are going to obtain the Wigner functions [7] corresponding
to the eigenfunctions evaluated by Landau’s formula (111.6) and we will see that they
are, essentiaily, the coefficients of Dirac’s deitas in (28). The spectral projector directly
provides ue with this information!

First of all, let us write the wavefunctions of Landau’s formula (111.6) in a conve-
nient form:

¥(q) = exp(i(p10q; + P3oe3)) exp [" [elB (q2 pm) .| (\/]e_ (‘12 ¥ ))

[ i1 2
~ 1] 1=
mw P\ P
: 10 10
= expli + Paats)|exp|— g, —— ) |H (\/mw( ——))
Pli(P10g; + P3093)] 9 27w n 27
(30)
Here pyg, pag ate two fixed real n'umbers H, () are Hermite polynomials. The Wigner
function corresponding to this wavefunction is given by [7]

e—an -z? bz
= St~ Pio)é(rs - o) /R & ="e I, (a + 2}, (a - 2)dz. (31)

For the sake of simplicity we have written

- P10 _ Vmw _2py _ . ,..b
a—\/mw(qz—-;n-:;) T =y b—m a_a+12. (32)

By using the parity properties of the Hermite polynomials, the integral in (31)
could be written in the form

e—(a?+(5/2)%) ® e N
_7——5(171 = P10)8(P3 ~ pay) /_m e”® Hy(z+a) H (z—a)de

e—(a® +b/2)%) . .
= (-1)" W—\/;n—a'fs(m = P1o)b(p3 — P30) 2" V/wn! L, (2a0”). (33)

W, = (-1)"
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In the last step we have used the identity (7.377) of [13]. By L, (z) we represent the
Laguerre polynomials. In order to finish this calculation, let us substitute formulae

(32) in (33). We get

Wo(ap) = S0, - i), — e e, (L), (34)

2} i& the one riven 1n formulae (‘)?\ and (24), As we nnhr‘tnafpr]

h the one given in formulae (23} and {24). As anticipate
Sumuming over p;,, Py to reintroduce the degeneratlon, we recover, except for a con-
stant factor, the coeflicients of the spectral projector. The concrete form of the Wigner
function depends on the gauge chosen.
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